Control of morphology in pattern directed dewetting of thin polymer films
نویسندگان
چکیده
We investigate the creation of large area mesoscale structures by controlling the dewetting pathways of thin polymer films on physically heterogeneous substrates comprising a two-dimensional (2-D) array of square pillars. Depending on the initial configuration and thickness of the film, dewetting produces a variety of both ordered and disordered structures. The substrate pattern strongly influences the dewetting pathways as well as the organization and size of the polymer structures. The key findings are: (i) the lateral confinement imposed by the substrate pattern can reduce the length-scale of the dewetted structure by one to two orders of magnitude as compared to dewetting on the same homogeneous substrate. (ii) When the polymer film is thin (<40 nm) and placed in a conformal contact with the patterned substrate, a perfect array of droplets occupying the interstitial spaces of pillar patterns is formed within a narrow range of film thickness. Nonlinear simulations show similar behavior. (iii) In contrast, for a flat polymer film resting only on the pillars and hanging freely over the channels, the dewetted droplets assemble on top of the pillars. (iv) For thicker films (>40 nm), dewetting progresses by nucleation of large holes, uncorrelated to the substrate pattern. The dewetted pattern in this case forms on multiple length-scales consisting of 10 mm droplets resulting from the coalescence of the holes and small (<1 mm) droplets at the interstitial locations due to stick–slip of the retracting contact line.
منابع مشابه
Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.
We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transiti...
متن کاملABSTRACT Title of dissertation: INFULUENCE OF POLYMER NANOPARTICLES ON THE DEWETTING OF POLYMER THIN FILMS
Title of dissertation: INFULUENCE OF POLYMER NANOPARTICLES ON THE DEWETTING OF POLYMER THIN FILMS Hongxia Feng, Doctor of Philosophy, 2005 Dissertation directed by: Professor R. M. Briber Department of Materials Science and Engineering The influence of polystyrene star based nanoparticles on the dewetting of spun-cast linear polystyrene (PS) films on Si/SiOx surfaces is investigated as a functi...
متن کاملPattern-Directed Dewetting of Ultrathin Polymer Films
We utilize chemically patterned substrates with arrays of progressively narrower stripes (1-15 μm) to investigate the influence of pattern size on the morphology of ultrathin dewetting polystyrene films. The scale and orientation of the spinodal-like height fluctuations of the dewetting patterns are coupled to the imposed substrate chemical frequency, providing a powerful means of morphological...
متن کاملPatterning dewetting in thin polymer films by spatially directed photocrosslinking.
In this report we examine the dewetting of spin-cast poly (styrene) films in a confined geometry. We designed a platform for laterally confining PS by photo-patterning crosslinks in spin-coated thin films. Heating the patterned film above the glass transition temperature of PS results in localized dewetting patterns in regions that were not crosslinked, while the crosslinked pattern serves as a...
متن کاملWetting-dewetting transition line in thin polymer films.
Thin polymeric films are increasingly being utilized in diverse technological applications, and it is crucial to have a reliable method to characterize the stability of these films against dewetting. The parameter space that influences the dewetting of thin polymer films is wide (molecular mass, temperature, film thickness, substrate interaction) and a combinatorial method of investigation is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008